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The emergence of nontrivial collective behavior is studied in large families of cellular automata rules
implemented on high-dimensional hypercubes. Evidence is found that the region of rule space where such
macroscopic dynamics exists is well-defined in the infinite-dimension limit.
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I. INTRODUCTION

The modeling of a variety of problems in physics, chem-
istry, or even biology may be approached by using cellular
automata(CA) [1–3]. Since the beginning of the last decade
[4], it has been known that such systems, constructed with
simple local rules and a small number of local states, may
present a chaotic and disordered local behavior together with
a well-defined, low-dimensional, temporal evolution of(spa-
tial) averages. Termed “nontrivial collective behavior”
(NTCB), these macroscopic attractors usually have a basin of
finite measure, and their number(in phase space) is indepen-
dent of system size. In a mean-field approach, one could
expect that the variety of global attractors for the dynamics
would decrease at high dimensions, since in that case the
neighborhood of each site can be thought to be a good rep-
resentative of the average behavior of the system. However,
previous results exploring up to six dimensions show the
opposite: the diversity of attractors increases.[5,6]

With the exception of Refs.[5,6], high-dimensional cellu-
lar automata have not been explored much, mainly because
they require large computational resources. In this work, we
focus on exploring these prototypical systems in even higher
dimensions. Using a convenient numerical algorithm, it is
possible to implement the dynamics of a cellular automaton
on a hypercube and reach up to 25 dimensions, albeit, natu-
rally, with a minimal linear extent. In order to identify the
collective behavior of our CA rules, we monitor the evolu-
tion of the simplest global observable. Particular attention is
paid to the evolution, as space dimension increases, of the
region of rule space wherebona fideNTCB is found, in an
attempt to approach the infinite-dimension limit.

II. CA RULES ON THE HYPERCUBE

We consider a collection of 2D discrete variablesx
P h0,1j sitting at the vertices of aD-dimensional hypercube.
The initial condition is constructed by randomly distributing
x=1 values on the hypercube with a concentrationc0, the
remaining sites being set tox=0. The dynamics is imple-
mented in parallel synchronous time steps by applying the
following deterministic cellular automata rule depending
only on S, the sum of the values of theD nearest neighbors
of a given site(the so-called “totalistic” rule):

xt+1 = H1 if Smin ø St ø Smax

0 otherwise.

Limiting ourselves to all combinations where
0,Smin,Smax,D defines Game of Life–like ruless
Smin.0 and Smax,D ensures that the homogeneousx=0
state is the only absorbing stated. These rules, denoted by
RSmin,Smax

D , form a family of reasonable size. The number
ND of possible rules for aD-dimensional hypercube is

ND = o
i=1

D−1

i =
sD − 1dsD − 2d

2
.

Numerically, the simulation of such CA rules is facilitated
by the use of a bit string representation for the vertices of the
D-dimensional hypercube. Each site can be encoded by a
D-bit string, where each bit codes the coordinate(0 or 1)
along one dimension. The bit string associated with a neigh-
bor of a given site then differs from the bit string associated
with that site by one single bit. The first neighbors of a given
vertex may thus be found by anXOR (exclusiveOR) operation
between the bit string associated with that vertex and the bit
string associated with 2i, i =0, . . . ,D−1. Figure 1 illustrates
the D=3 case. These easily programed operations are rather
fast on a computer.

III. RESULTS

For convenience, we mostly monitoredcstd, the average
value of the sites(or, equivalently, the density ofx=1 sites)

FIG. 1. Bit string representation of the vertices of a hypercube,
D=3, and the corresponding bit operation to find the nearest
neighbors.

PHYSICAL REVIEW E 69, 057201(2004)

1539-3755/2004/69(5)/057201(4)/$22.50 ©2004 The American Physical Society69 057201-1



during the simulations. Both the concentration return map
fcst+1d3cstdg and its time seriesfcstd3 tg are used to glo-
bally characterize the state of the system. For each possible
rule R, at least three different initial concentrations are used:
c0=0.25,0.5,0.75. This helps to ensure whether the collec-
tive motion recorded is a true attractor(i.e., with a large,
finite-measure basin of attraction) or a “marginal” one(see
below). We thus scanned the families of rules defined above
in dimensionsD=17 – 25. We first describe the typical cases
observed, characterize them, and define our notation.

The not-so-interesting situations, in the present context,
are those where the asymptotic evolution is not chaotic. In
the simplest case, all activity dies and every initial condition
eventually leads to thec=0 absorbing state. These rules are
coded Z in the following tables. It may also be that some
rules take the system to locally periodic solutionssLPd where
some specific sites follow an exact periodic cycle with a
site-dependent period[5]. Apart from this remaining local-
ized activity, the asymptotic state is then essentially frozen.

In agreement with previous findings[5], the true NTCB
attractors fall into two basic classes: periodicsPd or quasi-
periodicsQPd. Note that, strictly speaking, both are periodic
but that QP rules have an irrational period, incommensurate
with the clock of the discrete-time system. The macroscopic
behavior is actually noisy, but with normal, statistical fluc-
tuations which disappear in the infinite-size limit. These at-
tractors are robust to perturbations such as some degree of
noise in the rule, and they do not present obvious local order
or structure in space. Figure 2 shows the collective quasi-
periodic behavior with a period close to 5(QP5) exhibited
by the ruleR8,12

25 .
Attractors with a more complex structure may also exist,

and they are generally found to be combinations of the above
two cases. For example, we have found evolutions present-
ing a P2 basic cycle embellished with a QP3: the return
maps at every other time step show a QP3 attractor. This has
been denoted by P23QP3 in our classification. Similarly,
we have found P23QP3, P33QP3, etc.

An additional possibility is the occurrence of intermittent
switching between two(or more) well-defined macroscopic

dynamics. A typical case is shown in Fig. 3. In the following
the symbol “u” is used to indicate intermittent behavior
among attractors(e.g., “PuQP” represents intermittent be-
havior between periodic and quasiperiodic attractors).

Cases where different initial conditions lead to different
macroscopic dynamics are the most difficult to diagnose. In
the large systems studied here, it is indeed quite impossible
to distinguish between the coexistence of a fewbona fide
NTCB attractors, each with a finite-measure basin of attrac-
tion, and an infinity of different macroscopic dynamics with
essentially zero-measure basins. Most of the time, the latter
possibility seems to be the right one: any initial condition
leads to a different, often complicated(i.e., not classifiable as
P or QP) asymptotic dynamics. Activity is then often con-
fined to parts of the system. These rules have been termed
“marginal,” coded M. Figure 4 shows first return maps for a
typical marginal rule(for clarity the first 100 points were
dropped).

With this taxonomy in mind we classified all possible
rules. The results are shown in theSmin/D3Smax/D plane,
which allows for a unified representation of our global re-

FIG. 2. First return map of a typical collective quasiperiodic
QP5 regime(irrational period close to 5). RuleR8,12

25 . The symbols
indicate the different initial concentrations: circles forc0=0.25 and
crosses forc0=0.5. The transients leading to the central torus are
shown.

FIG. 3. Time series ofc for intermittent ruleR6,11
17 . Intermittent

behavior between three collective regimes(two different P3, and
one P1), as shown in the short-time return maps shown in the insets.

FIG. 4. First return map of a typical marginal ruleR1,3
17 . The

symbols(and color online) indicate the different initial concentra-
tions fromc0=0.2 toc0=0.6.
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sults in all dimensions. To facilitate a global view of the
partitioning of rule space, we used empty symbols(square,
diamond, and triangle) to denote nonchaotic(Z, LP) or mar-
ginal sMd behavior. Solid symbols were reserved to represent
NTCB. In Fig. 5, which shows rule space for dimensions
D=17, 19, 22, and 25, one can thus clearly distinguish a
large central region where NTCB is found, whereas marginal
sMd behavior is confined to the left(smallSmin). Nonchaotic
rules Z and LP are, respectively, found in the upper right
(largeSmin) and upper leftsSmax,Dd regions, in agreement
with simple mean-field arguments[5].

IV. DISCUSSION

Our results are of course limited, due to their numerical
nature. Having deliberately chosen to go to very large dimen-
sions, we could not apply systematically the necessary pro-
tocol to check whether our findings subsist in the infinite-size
limit. We nevertheless suspect that they do so. At any rate,
satisfactory answers will only come after one is able to pre-
dict from the local rule, within some(mean-field-like) ap-
proximation, the observed collective motion.

This caveat aside, several messages can be extracted from
our results. One such conclusion, already hinted at in Ref.

[5], is that the mean-field approximation[or at least its
simple implementation in terms of a single map forcstd]
doesnot represent the infinite-dimension limit of the behav-
ior of chaotic, high-dimensional CA rules. More precisely,

FIG. 5. (Color online) Classification of the dynamics for all possible rules on the hypercube forD=17, 19, 22, 25.

FIG. 6. Sketch of rule space in the infinite dimension limit. The
arrows indicate the possible shrinking of M and LP regions in this
limit (see the discussion in the text).
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the infinite-dimension limit seems to be singular, since ex-
trapolating the results presented here toD→` hints at a
well-defined partition of rule space.

Figure 6 is an attempt at such an extrapolation to the
infinite-dimension limit. The central NTCB region, as ob-
served in Fig. 5, is well-defined and shows no sign of shrink-
ing when increasingD. One can observe, though, that inter-
mittent behavior seems to occupy a larger and larger region
of parameter space. This is due to the increasing diversity of
NTCB combined with the increasing importance of finite-
size effects in our size-2 dimension-D hypercubes. We ex-
pect, as noted in Ref.[5], that intermittent behavior progres-
sively disappears, at fixedD, as the linear extent of the
hypercube is increased, because it does not seem generic for
many rules to sit precisely at the border between two basins
of attraction. The status of marginal rules is also confirmed
by our results: they do appear as sitting at the “edge of
chaos”[1,7] and are thus probably the most “complex” ones.
Going one step further in our extrapolation, one can notice,
from Fig. 5, that the marginal and locally periodic rules(M
and LP) tend to occupy a smaller and smaller region asD
increases. On the other hand, no such trend is apparent for

zerosZd rules. Accepting these observations would lead to an
asymptotic picture slightly different from Fig. 6, where only
NTCB and zero rules occupy a finite portion of rule space
(the arrows in Fig. 6 are an attempt at indicating this possi-
bility ).

In a sense, the asymptotic existence of NTCB on the hy-
percube found here strengthens both the trend uncovered in
Ref. [5] for rather large lattices of moderate dimension, and
the findings of Mousseau[8], who showed that the NTCB is
also generically observed in random networks of finite, con-
stant connectivity(which may be thought of as being infinite
dimensional). This suggests looking for NTCB in other ge-
ometries such as complex networks, with the additional dif-
ficulty that a different rule would then have to be imple-
mented at different nodes because of the inherent varying
connectivity of these systems.
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