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Cellular automata on high-dimensional hypercubes
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The emergence of nontrivial collective behavior is studied in large families of cellular automata rules
implemented on high-dimensional hypercubes. Evidence is found that the region of rule space where such
macroscopic dynamics exists is well-defined in the infinite-dimension limit.
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|. INTRODUCTION o1 1 if Spin<S=< S
0 otherwise.

The modeling of a variety of problems in physics, chem-
istry, or even biology may be approached by using cellulaiimiting ourselves to all combinations where
automataCA) [1-3]. Since the beginning of the last decade 0< S, < S, x<D defines Game of Life—like ruleg
[4], it has been known that such systems, constructed witl ;. >0 andS,.<D ensures that the homogeneoxs0
simple local rules and a small number of local states, magtate is the only absorbing statdhese rules, denoted by
present a chaotic and disordered local behavior together witig L , form a family of reasonable size. The number
a well-defined, low-dimensional, temporal evolution(spa- Np of ;%ssible rules for @-dimensional hypercube is
tial) averages. Termed “nontrivial collective behavior”

(NTCB), these macroscopic attractors usually have a basin of - (D-1(D-2)

finite measure, and their numb@n phase spages indepen- Np= 2 = - 5,

dent of system size. In a mean-field approach, one could =1

expect that the variety of global attractors for the dynamics  Numerically, the simulation of such CA rules is facilitated
would decrease at high dimensions, since in that case th§y the use of a bit string representation for the vertices of the
neighborhood of each site can be thought to be a good regp-dimensional hypercube. Each site can be encoded by a
resentative of the average behavior of the system. Howevep.pit string, where each bit codes the coording@eor 1)
previous results exploring up to six dimensions show thealong one dimension. The bit string associated with a neigh-
opposite: the diversity of attractors increasést] bor of a given site then differs from the bit string associated

With the exception of Refg5,6], high-dimensional cellu-  with that site by one single bit. The first neighbors of a given
lar automata have not been explored much, mainly becausgrtex may thus be found by &R (exclusiveor) operation
they require large computational resources. In this work, weyetween the bit string associated with that vertex and the bit
focus on exploring these prototypical systems in even highestring associated with' 2i=0, ... D-1. Figure 1 illustrates

dime_nsions._ Using a convenient _numerical algorithm, it isthe D=3 case. These easily programed operations are rather
possible to implement the dynamics of a cellular automatonast on a computer.

on a hypercube and reach up to 25 dimensions, albeit, natu-

rally, with a minimal linear extent. In order to identify the

collective behavior of our CA rules, we monitor the evolu- lll. RESULTS
tion of the simplest global observable. Particular attention is _ .
paid to the evolution, as space dimension increases, of the FOr convenience, we mostly monitored), the average
region of rule space whefigona fideNTCB is found, in an value of the sitegor, equivalently, the density of=1 siteg

attempt to approach the infinite-dimension limit.
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Il. CA RULES ON THE HYPERCUBE

We consider a collection of 22 discrete variablesx ~ o1l
€{0, 1} sitting at the vertices of ®-dimensional hypercube.
The initial condition is constructed by randomly distributing 011 ‘/
x=1 values on the hypercube with a concentratignthe
remaining sites being set to=0. The dynamics is imple-
mented in parallel synchronous time steps by applying the
following deterministic cellular automata rule depending FIG. 1. Bit string representation of the vertices of a hypercube,
only on S, the sum of the values of thHE nearest neighbors D=3, and the corresponding bit operation to find the nearest
of a given site(the so-called “totalistic” rulg neighbors.
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FIG. 2. First return map of a typical collective quasiperiodic

QPS5 regime(irrational period close to)5 Rule R, The symbols FIG. 3. Time series o for intermittent ruleRg’,,. Intermittent
indicate the different initial concentrations: circles fp=0.25 and  behavior between three collective regiméwo different P3, and
crosses forcy=0.5. The transients leading to the central torus areone P3, as shown in the short-time return maps shown in the insets.
shown.

, , ) , dynamics. A typical case is shown in Fig. 3. In the following
during the simulations. Both the concentration return magpe symbol " is used to indicate intermittent behavior

[c(t+1) X c(t)] and its time seriefc(t) X t] are used t0 glo-  among attractorse.g., “P/QP” represents intermittent be-
ba}lly char?cterlzhe thed ?ftate of the Isystem. For each poss'gl%vior between periodic and quasiperiodic attragtors
rule R, at least three different initial concentrations are used: ; P " :

! . Cases where different initial conditions lead to different
Co=0.25,0.5,0.75. This helps to ensure whether the collec
tive motion recorded is a true attract@re., with a large,
finite-measure basin of attractipor a “marginal” one(see

below). We thus scanned the families of rules defined abov . o .
in dimensionsD=17 — 25. We first describe the typical cases TCB attractors, each with a finite-measure basin of attrac-

observed, characterize them, and define our notation. tion, and an infinity of different macroscopic dynamics with

The not-so-interesting situations, in the present contex€SSentially zero-measure basins. Most of the time, the latter
are those where the asymptotic evolution is not chaotic. IP0Ssibility seems to be the right one: any initial condition
the simplest case, all activity dies and every initial conditionl€ads to a different, often complicatéice., not classifiable as
eventually leads to the=0 absorbing state. These rules areP or QP asymptotic dynamics. Activity is then often con-
coded Z in the following tables. It may also be that somefined to parts of the system. These rules have been termed
rules take the system to locally periodic solutigh®) where ~ “marginal,” coded M. Figure 4 shows first return maps for a
some specific sites follow an exact periodic cycle with atypical marginal rule(for clarity the first 100 points were
site-dependent periofb]. Apart from this remaining local- dropped.
ized activity, the asymptotic state is then essentially frozen. With this taxonomy in mind we classified all possible

In agreement with previous finding$], the true NTCB  rules. The results are shown in t&g;,/ D X Spad D plane,
attractors fall into two basic classes: period® or quasi- which allows for a unified representation of our global re-
periodic (QP). Note that, strictly speaking, both are periodic
but that QP rules have an irrational period, incommensurate L ' ' ' ' ! ' T
with the clock of the discrete-time system. The macroscopic o ¢,=0.2
behavior is actually noisy, but with normal, statistical fluc- 0.5 o ¢,=0.3
tuations which disappear in the infinite-size limit. These at- c,=0.4
tractors are robust to perturbations such as some degree « - a ¢,=05
noise in the rule, and they do not present obvious local ordei c,=0.6
or structure in space. Figure 2 shows the collective quasi-£ 04| ’
periodic behavior with a period close to(®P5 exhibited
by the ruleR3%,

Attractors with a more complex structure may also exist, 5|
and they are generally found to be combinations of the above
two cases. For example, we have found evolutions present L i
ing a P2 basic cycle embellished with a QP3: the return ‘553 Y 0'5 : 0'6
maps at every other time step show a QP3 attractor. This ha ' ' (1) ' '
been denoted by P2QP3 in our classification. Similarly,
we have found PX QP3, P3< QP3, etc. FIG. 4. First return map of a typical marginal ruR;’; The

An additional possibility is the occurrence of intermittent symbols(and color onling indicate the different initial concentra-
switching between twgor more well-defined macroscopic tions fromcy=0.2 tocy=0.6.

macroscopic dynamics are the most difficult to diagnose. In
the large systems studied here, it is indeed quite impossible
o distinguish between the coexistence of a feana fide
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FIG. 5. (Color onling Classification of the dynamics for all possible rules on the hypercub®#fot7, 19, 22, 25.

sults in all dimensions. To facilitate a global view of the [5], is that the mean-field approximatigor at least its

partitioning of rule space, we used empty symb@iguare,
diamond, and triangleto denote nonchaotiZ, LP) or mar-

simple implementation in terms of a single map frit)]
doesnot represent the infinite-dimension limit of the behav-

ginal (M) behavior. Solid symbols were reserved to represenior of chaotic, high-dimensional CA rules. More precisely,

NTCB. In Fig. 5, which shows rule space for dimensions
D=17, 19, 22, and 25, one can thus clearly distinguish a
large central region where NTCB is found, whereas marginal
(M) behavior is confined to the lefsmall S,,;,). Nonchaotic
rules Z and LP are, respectively, found in the upper right
(large Syin) and upper left(S,.~ D) regions, in agreement
with simple mean-field argumenfs].

IV. DISCUSSION

Our results are of course limited, due to their numerical
nature. Having deliberately chosen to go to very large dimen-
sions, we could not apply systematically the necessary pro-
tocol to check whether our findings subsist in the infinite-size
limit. We nevertheless suspect that they do so. At any rate,
satisfactory answers will only come after one is able to pre-
dict from the local rule, within somémean-field-likg ap-
proximation, the observed collective motion.
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FIG. 6. Sketch of rule space in the infinite dimension limit. The

This caveat aside, several messages can be extracted fraimows indicate the possible shrinking of M and LP regions in this
our results. One such conclusion, already hinted at in Refimit (see the discussion in the tgxt
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the infinite-dimension limit seems to be singular, since exzero(Z) rules. Accepting these observations would lead to an
trapolating the results presented heree-c hints at a  asymptotic picture slightly different from Fig. 6, where only
well-defined partition of rule space. . NTCB and zero rules occupy a finite portion of rule space
~ Figure 6 is an attempt at such an extrapolation to thgthe arrows in Fig. 6 are an attempt at indicating this possi-
infinite-dimension limit. The central NTCB region, as ob- pjlity).
served in Fig. 5, is well-defined and shows no sign of shrink- |5 sense, the asymptotic existence of NTCB on the hy-
ing when increasin@. One can observe, though, that inter- sercype found here strengthens both the trend uncovered in
mittent behavior seems to occupy a Ia_rger anq Iarger I€QI0Ref (5] for rather large lattices of moderate dimension, and
of parameter space. This is due to the increasing diversity h,q finings of Moussea8], who showed that the NTCB is
glgzﬁ;%gbi'ge:urwggege dlir:r?:;iiisé;%]hlmggltjigcse \(/)erﬂg;(t_e- also generically observed in random networks of finite, con-
. X n-nyp o stant connectivitywhich may be thought of as being infinite
pect, as_noted n Re[5],_ that Intermittent behavior progres- dimensionagl. This suggests looking for NTCB in other ge-
sively disappears, at fixe®, as the linear extent of the metries such as complex networks, with the additional dif-

hypercube is increased, because it does not seem generic |crulty that a different rule would then have to be imple-

Qag,&/r;lél,[?;ntoTﬂ;psrg (i:,.sflgfar;g:eir?;r?ﬁregﬁtswsig t(\:'é?‘fﬁarﬁén ented at different nodes because of the inherent varying
' 9 Fonnectivity of these systems.

by our results: they do appear as sitting at the “edge o
chaos”[1,7] and are thus probably the most “complex” ones.

Going one step further in our extrapolation, one can notice, ACKNOWLEDGMENTS
from Fig. 5, that the marginal and locally periodic ruids
and LP tend to occupy a smaller and smaller regionZas We thank Cape¢Brazil) and Cofecub(France for sup-

increases. On the other hand, no such trend is apparent fport. L.B. also thanks the CEA/Saclay for hospitality.
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